
Politechnika Poznańska Europejski System Transferu Punktów

Wydział Informatyki

strona 1 z 3

KARTA OPISU MODUŁU KSZTAŁCENIA
Nazwa modułu/przedmiotu Kod

Architektura i weryfikacja oprogramowania 1010512321010517863

Kierunek studiów Profil kształcenia
(ogólnoakademicki, praktyczny)

Rok / Semestr

Informatyka (brak) 1 / 2
Ścieżka obieralności/specjalność Przedmiot oferowany w języku: Kurs (obligatoryjny/obieralny)

Software Engineering (Inżynieria
oprogramowania)

angielski obligatoryjny

Stopień studiów: Forma studiów (stacjonarna/niestacjonarna)

II stopień stacjonarna

Godziny Liczba punktów

Wykłady: 30 Ćwiczenia: - Laboratoria: 30 Projekty/seminaria: - 5

Status przedmiotu w programie studiów (podstawowy, kierunkowy, inny) (ogólnouczelniany, z innego kierunku)

(brak) (brak)

Obszar(y) kształcenia i dziedzina(y) nauki i sztuki

nauki techniczne

 nauki techniczne

Podział ECTS (liczba i %)

5 100%

 5 100%

Odpowiedzialny za przedmiot / wykładowca:

Bartosz Walter

email: bartosz.walter@cs.put.poznan.pl

tel. 616652980

Wydział Informatyki

ul. Piotrowo 3 60-965 Poznań

Odpowiedzialny za przedmiot / wykładowca:

Michał Maćkowiak

email: michal.mackowiak@cs.put.poznan.pl

tel. 616652944

Wydział Informatyki

ul. Piotrowo 3 60-965 Poznań

Wymagania wstępne w zakresie wiedzy, umiejętności, kompetencji społecznych:

1 Wiedza:
Student starting this module should have a basic knowledge regarding basic algorithms and
computational complexity, object-oriented programming, design patterns, databases, software
testing and web applications.

2 Umiejętności:
Should have skills allowing solving basic problems related to requirements analysis, creating
software specification, designing systems and skills that are necessary to acquire information
from given sources of information.

3
Kompetencje

społeczne

Student should understand the need to extend his/her competences / has the willingness to
work in a team.

In addition, with respect to the social skills, the student should demonstrate such attitudes as
honesty, responsibility, perseverance, curiosity, creativity, manners, and respect for other
people.

Cel przedmiotu:

1. Provide students with knowledge regarding software architecture, within the following scope of understanding what is
software architecture, how it should be documented and evaluated

2. Introduce students to component- and service-oriented architectures

3. Develop students? teamwork skills in the context of designing software systems

Efekty kształcenia i odniesienie do kierunkowych efektów kształcenia

Wiedza:

1. student has well-established theoretical knowledge of computer systems architecture, software design, software testing and
verification, software engineering - [K_W4+++]

2. student has detailed theoretical knowledge related to selected areas of computer science creating software architecture,
documenting system architecture, evaluation of architecture, modeling software, designing software, testing and verifying
software - [K_W5+++]

3. student has knowledge regarding trends and the most important new developments in computer science and related
disciplines - [K_W6+]

4. student has basic knowledge regarding life-cycle of software or hardware systems - [K_W7+]

5. student knows the fundamental methods, techniques and tools employed to solve complex engineering tasks in a selected
area of software architecture, software modeling and design, software testing and verification - [K_W8+++]

Umiejętności:

Politechnika Poznańska Europejski System Transferu Punktów

Wydział Informatyki

strona 2 z 3

1. student is able to acquire, combine, interpret and evaluate information from literature, databases and other information
sources (in mother tongue and English); draw conclusions, and formulate opinions based on it. - [K_U1+]

2. student is able to plan and arrange self-education process - [K_U5+]

3. student has language skills at B2+ level in accordance with the requirements set out for level B2+ Common European
Framework of Reference for Languages - [K_U6+]

4. student is able to employ analytical, simulation, and experiment methods to formulate and solve engineering tasks and
basic research problems - [K_U9+]

5. student is able to combine knowledge from different areas of computer science (and if necessary from other scientific
disciplines) to formulate and solve engineering tasks; and use system approach that also incorporates nontechnical aspects -
[K_U10++]

6. student is able to formulate and test hypotheses regarding engineering problems and basic research problems -
[K_U12+++]

7. student is able to assess usefulness and possibility of employing new developments (methods and tools) and new IT
products - [K_U13++]

8. student is able to develop an object-oriented model of a simple software system (e.g., in UML notation) - [K_U17++]

9. student is able to assess software architecture from the perspective of non-functional requirements - [K_U18+++]

10. student is able to effectively participate in software inspections - [K_U19+++]

11. student is able to systematically execute functional tests - [K_U20+++]

12. student is able to evaluate usefulness of methods and tools (also to identify their limitations) used to solve engineering
tasks, i.e., building IT systems or their components - [K_U24+++]

13. student is able to choose appropriate programming language and use it to solve a particular task - [K_U26+++]

14. is able to design (according to a provided specification which includes also non-technical aspects) a complex device, an IT
system, or a process; and is able implement it (at least partially) using appropriate methods, techniques, and tools (including
adjustment of available tools or developing new ones) - [K_U27+++]

Kompetencje społeczne:

1. student understands that knowledge and skills related to computer science quickly become obsolete - [K_K1++]

2. student knows examples and understands the causes of the failures of IT systems that have led to major financial or social
losses, or caused damage to health or even death - [K_K4+++]

3. student is able to correctly assign priorities to own tasks and tasks performed by others - [K_K6+]

Sposoby sprawdzenia efektów kształcenia

Formative assessment:

a) lectures:

? based on the answers to the questions which test understanding of material presented on the lectures

b) laboratory classes / tutorials / projects / seminars:

? based on the assessment of the tasks done during classes and as a homework

Summative assessment:

a) verification of assumed learning objectives related to lectures:

? assessment of knowledge and skills, examined by a written test with multiple choices and problem questions.
Student can gain 100 points, to pass minimum 50 points are needed

? discussing the results of the examination

b) verification of assumed learning objectives related to laboratory classes / tutorials / projects / seminars:

? assessment of student?s preparation to particular laboratory classes and assessment of student?s skills needed to
realize tasks on these classes

? continuous assessment of student?s work during classes ? rewarding ability to use learned principles and methods

? assessment of projects realization, including ability to work in team

Possibility to gain additional points by activity on classes:

? elaboration of additional aspects regarding the subject

? effectiveness of applying acquired knowledge to solve problems

? ability to cooperate with the team during solving problems

? providing additional remarks for the lecturer how to improve teaching materials

? highlighting the problems with students? perception to improve the teaching process

Treści programowe

Politechnika Poznańska Europejski System Transferu Punktów

Wydział Informatyki

strona 3 z 3

The program of the lecture:

Definition of software architecture. Role of the architect. Process of creating software architecture. Types of software
architects. How and what should be documented in description of software architecture. Why the architecture should be
evaluated. Description of ATAM (Architecture Tradeoff Analysis Method). Principles of good diagrams. Definition of
component-based architecture. Properties of a component. Inversion of control. Dependency injection methods. Role of a
component container. Review of component container technologies. Definition of service-oriented architecture.
Implementations of service-oriented architecture: web services and REST approach. Modeling constraints for UML models
with OCL. Defining pre-and post-conditions for operations. Validation of OCL expressions. The Design by Contract concept as
a semin-formal method for specifying functionality. Modeling with Eclipse Modeling Framework. Overview of testing methods
at different levels. Role and structure of tests in a software project.

The course consists of fifteen 2-hour laboratory classes and it starts with an instructional session at the beginning of a
semester. Students work individually or in teams of 2-4.

The program of laboratory classes is following:

Creating a software architecture description, including usability tree, design decisions and architectural views. Preparation to
an ATAM meeting. Performing an ATAM meeting to evaluate the architecture of a sample system. Realization of software
development tasks related to a component-based application using Unity 2.0 Container for .NET framework. Creating a
system based on software-oriented architecture using web services for .NET framework. Reconfiguring the system in the way
the services conform to REST approach. Defining and interpreting OCL constraints for an existing UML model. Defining pre-
and post-conditions for operations and methods. Inheritance of pre- and post-conditions. Defining a model and generating
application framework with Eclipse Modeling Framework. Designing test cases on different levels of tests. Computing test
quality measures. Implementing acceptance tests in selected technologies.

Literatura podstawowa:

1. L. Bass, P. Clements, R. Kazman, ?Software architecture in practice?, WNT

2. P. Kruchten, ?The Rational Unified Process-An Introduction?, Addison-Wesley

3. R. V. Binder: ?Testing Object-Oriented Systems: Models, Patterns and Tools?, Addison-Wesley

Literatura uzupełniająca:

1. D. Spinellis and G. Gousios, ?Beautiful Architecture?, O?Reilly Media

2. D. Spinellis and G. Gousios, ?Beautiful Architecture?, O?Reilly Media

Bilans nakładu pracy przeciętnego studenta

Czynność Czas (godz.)

1. participating in laboratory classes / tutorials: 15 x 2 hours

2. consulting issues related to the subject of the course; especially related to t laboratory classes and
projects,

3. implementing, running and verifying software application(s) (in addition to laboratory classes)

4. participating in lectures

5. studying literature / learning aids (10 pages = 1 hour), 150 pages

6. discussing the results of the examination

7. preparing to and participating in exams: 15 hours + 2 hours

30

7

20

30

15

1

17

Obciążenie pracą studenta

forma aktywności godzin ECTS

Łączny nakład pracy 120 5

Zajęcia wymagające bezpośredniego kontaktu z nauczycielem 70 3

Zajęcia o charakterze praktycznym 57 2

